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Abstract

This paper analyses the damping characteristics of a titanium shell with a magnetostrictive layer bonded
to it. The magnetostrictive layer produces an actuating force required to control vibration in the shell,
based on a negative velocity feedback control law. The control input is the current to the solenoid
surrounding the shell. In the present study, a finite element formulation, physically consistent with the
problem has been developed. Vibration reduction in the shell by changing the position of the
magnetostrictive layer and its current carrying actuating coil pair along the shell is investigated.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibration control of structures using smart materials has received considerable attention. Shape
memory alloys, piezoelectric ceramics; electro-rheological fluids have been used as smart materials
for sensors and/or actuators. Piezoelectric materials have been extensively investigated for use in
active vibration and noise control. Of late, magnetostrictive materials are being considered as
promising candidates for both sensors and actuators. With the availability of magnetostrictive
material Terfenol-D, in various forms including powders, magnetostrictive materials are emerging
as a highly attractive material for smart structure applications.
Studies have been reported on electromagnetic-mechanical coupling problems right from the

seventies. For instance, Wallerstein and Peach [1] have studied magnetoelastic buckling of beams
and plates of magnetically soft materials. Miya et al. [2] reported their experiments and theoretical
studies on magnetoelastic buckling of ferromagnetic structures. They have also developed a finite
element formulation for this magnetoelastic buckling [3]. Ambartsumian [4] has presented a
review of magneto-elasticity in thin plates and shells. Sablik et al. [5] formulated the coupled
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magneto-elastic theory for magnetostrictive hysteresis. Hudson et al. [6] have investigated elastic
and magnetomechanical coupling models for polymer-bonded Terfenol composites. Dapino et al.
[7] have made a significant contribution to the modelling of the structural-magnetic strain
developed in a magnetostrictive transducer. They have calculated and validated the strains
developed by considering both the rotation of the moments within the material in response to the
applied field and the elastic property of the material. Yamamoto et al. [8] have developed and
analyzed the application of a three-dimensional magnetostrictive sensor. Krishnamurthy et al. [9]
and Reddy and Barbosa [10] have studied the use of magnetostrictive material for vibration
control of flexible beams. They have considered the magnetostrictive material to be one full layer
in the laminate, with partly covered actuating coils. The actuating coils were modelled as
solenoids, with the current input to the solenoid being considered as a function of space and time.
Though it is mathematically possible to model the current in the solenoid in this manner, it is not
physically reasonable to provide a spatially varying current throughout the length of the coil. The
magnetic field induced by the solenoid is more or less constant within the solenoid length, but
reduces to an insignificant amount, within a short axial distance after the end of the solenoid. This
residual magnetic field will stimulate the magnetostrictive layer, an effect not considered in their
investigations.
It is also found from the literature that there is no reported investigation, which deals with

vibration control of shells with a magnetostrictive layer. Shell vibration attenuation in gun or
cannon barrels and in cylindrical pipes conveying fluids using magnetostrictive materials is a
potential application area. Hence in the present paper an attempt is made to control vibrations in
cylindrical shell using a magnetostrictive layer. The shell under study is discretized into finite
elements and the magnetostrictive layer of the size of a single element along with its actuating coil
is located at various positions to demonstrate the effective damping characteristics. Magneto-
strictive layer, Terfenol-D, is an alloy or terbium, iron and dysprosium. The magnetostrictive
layer responds to the magnetic and mechanical stimuli. The magnetostrictive layer expands when
excited with a magnetic field allowing it to be used as embedded actuators. On the other hand
when the layer is mechanically strained, it generates an induced voltage across a sensing coil
placed near the vincity. The magnetomechanical coefficient depends upon the pre-stress and
magnetic field. For the purpose of illustration, in this work, this layer is assumed to have perfect
orientation.

2. Formulation

A typical conventional titanium shell having a small Terfenol-D layer on the top, with a current
carrying coil, enclosing them, as shown in Fig. 1, is considered. The magnetostrictive layer is of
non-linear nature at moderate or high magnetic drive levels. To model the magnetostrictive layer
with a linear constitutive relation, the necessary low magnetic field regimes is obtained by
applying a biasing current to the surrounding coils. The low magnetic field intensity induces an
actuation stress in the Terfenol-D layer. The width of the coil is made as small as possible to
achieve the required variation of control forces in this region.
Consider a cylindrical four-nodded shell element with seven-degree-of-freedom at each node

as shown in Fig. 2. The shell element is developed based on the shell element of Zienkiewicz [11].
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The nodal displacement for a node is expressed as

fdg ¼ fu; v; ð@u=@yÞ; ð@v=@yÞ;w; ð@w=@xÞ; ð@w=@yÞgT ð1Þ

The deformation in the shell is expressed in terms of the middle surface deformations, u; v and
w; which are the meridional, tangential and normal displacements, respectively.
These displacements are now expressed in terms of x and y; the meridional and circumferential

co-ordinate, respectively, as

wðx; yÞ ¼ a1 þ a2x þ a3yþ a4xyþ a5x
2 þ a6y

2

þ a7x
2yþ a8xy

2 þ a9x
3 þ a10y

3 þ a11x
3yþ a12xy

3;

uðx; yÞ ¼ a13 þ a14x þ a15yþ a16xyþ a17y
2 þ a18xy

2 þ a19y
3 þ a20xy

3;

vðx; yÞ ¼ a21 þ a22x þ a23yþ a24xyþ a25y
2 þ a26xy

2 þ a27y
3 þ a28xy

3; ð2Þ

which can be expressed in matrix form as

fdg ¼ ½N�fAg; ð3Þ
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Fig. 1. Conventional titanium shell with magnetostrictive layer.
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Fig. 2. Conventional cylindrical shell element.
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where fdg is the displacement vector, ½N� is the matrix of shape functions and fAg is the vector of
generalized displacements. The 28 generalized displacements can be now written in terms of nodal
displacements as

frgT ¼

u1; v1; ð@u=@yÞ1; ð@v=@yÞ1;w1; ð@w=@xÞ1; ð@w=@yÞ1;

u2; v2; ð@u=@yÞ2; ð@v=@yÞ2;w2; ð@w=@xÞ2; ð@w=@yÞ2;

u3; v3; ð@u=@yÞ3; ð@v=@yÞ3;w3; ð@w=@xÞ3; ð@w=@yÞ3;

u4; v4; ð@u=@yÞ4; ð@v=@yÞ4;w4; ð@w=@xÞ4; ð@w=@yÞ4

2
6664

3
7775; ð4Þ

where

frg ¼ ½T �fAg or fAg ¼ fTg	1frg: ð5Þ

Substituting in Eq. (1) one obtains

fdg ¼ ½N�½T �	1frg: ð6Þ

The strain matrix is

ef g ¼

ex

ey
gxy

Xx

Xy

Xxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

du

dx
1

r

dv

dy
þ

w

r
1

r

du

dy
þ
dv

dx

	
d2w

dx2

	
1

r2
d2w

dy2
þ

1

r2
dv

dy

2 	
1

r

d2w

dxdy
þ
1

r

dv

dx

� �

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

; ð7Þ

where feg is the strain matrix. The strain can be represented in terms of nodal displacements frg
as

feg ¼ ½B�frg; ð8Þ

where ½B� is the strain displacement matrix.
The stress–strain relation is given by

½s� ¼ ½D�feg; ð9Þ
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where ½s� is the stress matrix and ½D� is the material property matrix which is defined as

½D� ¼

Eh

1	 n2
nEh

1	 n2
0 0 0 0

Eh

1	 n2
0 0 0 0

ð1	 nÞEh

2ð1	 n2Þ
0 0 0

Eh3

12ð1	 n2Þ
nEh3

12ð1	 n2Þ
0

sym
Eh3

12ð1	 n2Þ
0

ð1	 nÞEh3

24ð1	 n2Þ

2
666666666666666666664

3
777777777777777777775

; ð10Þ

where E is Young’s modulus of the titanium shell, h is the width of the shell and n is the poisson
ratio. The stiffness and mass matrices of size 28
 28 are derived using conventional finite element
procedures. They are given as

½K� ¼
Z

½N�T½B�T½D�½B�½N�r dx dy;

½M� ¼
Z

½N�T½T �T½T �½N�r dx dy: ð11Þ

The linear constitutive relation for the magnetostrictive layer can be expressed as [9]

ex ¼ Ssþ dmH; ð12Þ

where s is the stress, ex is strain field, S is the compliance of the magnetostrictive layer, dm is the
magnetomechanical-coupling coefficient, and H is the magnetic field intensity. The actuation
stress induced in the shell is given by

sa ¼ 	EmdmH; ð13Þ

where Em is the modulus of elasticity of the magnetostrictive layer. For a coil with n turns, the
generated magnetic field is modelled as

Hðx; tÞ ¼ nIðtÞjðxÞ: ð14Þ

In Refs. [7,8], the current is assumed to be a function of space and time, i.e. I � Iðx; tÞ which is
physically not possible. For a standard solenoid-type wound coil [12] having a coil radius of r; the
coil constant jðxÞ is given as

jðxÞ ¼
r2

2ðr2 þ x2Þ3=2
: ð15Þ

Considering the closed-loop negative velocity proportional feedback control, the current in the
coil is proportional to the velocity of the shell. It is assumed that the vibration is sensed using an
accelerometer placed at desired locations and the velocity obtained by integration of the signal.
The desired locations are those where the magnetostrictive layer and current coil pair are located.
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The feedback current to the solenoid is then given as

IðtÞ ¼ 	G ’wavgðtÞ; ð16Þ

where G is the control gain and ’wavgðtÞ is the average velocity over the element in the finite element
model. Rewriting Eq. (14), one obtains

Hðx; tÞ ¼ 	nG ’wavgðtÞjðxÞ: ð17Þ

The moment induced by the actuation stress about the meridional plane is given by

Ma
11 ¼ 	

z22 	 z21
2

� �
EmdmH: ð18Þ

Substituting for the field intensity H in the above equation, the expression for moment induced
becomes

Ma
11 ¼

z22 	 z21
2

� �
EmdmnG ’wavg jðxÞ: ð19Þ

The average velocity across an element for the finite element formulation is chosen as

’wavg ¼ G ’w ¼ 0 0 0 0 1
4
0 0 0 0 0 0 1

4
0 0 0 0 0 0 1

4
0 0 0 0 0 0 1

4
0 0

� � @w

@t
: ð20Þ

The equation for the dynamics of the shell under consideration with the moment actuation
becomes

½M� x
::

� �
þ ½K �fxg 	 b

@2ðMa
11Þ

@x2

� �
¼ 0: ð21Þ

We now assume the variation of the magnetic field within the solenoid to be a constant, i.e. j is a
constant. This leads to a delta function in the last term in Eq. (21).
The last term yields the damping term that is given below

	obEmdnG
z22 	 z21

2

� �
Vfdig

T

Z
@Ni

@x

� �T 	
@w

@x

����
x¼0;y¼0

þ
@w

@x

����
x¼a;y¼0

	
@w

@x

����
x¼0;y¼b

þ
@w

@x

����
x¼a;y¼b

2
6664

3
7775dxfdig: ð22Þ

The state-space problem is solved for damping ratio and damped natural frequencies using a
standard LAPACK routine DGEGV [13].

3. Validation of magnetostrictive model

It is found from the literature that there is no work which deals with active control of shell with
magnetostrictive layer. Hence an attempt is made to compare the finite element results with beam
model formulation available in the literature. Krishnamurthy et al. [9] and Reddy and Barbosa
[10] have studied the use of magnetostrictive material for vibration control of flexible composite
beams. In their formulation, they made an assumption of the feedback current as a function of
space and time, which is not physically consistent. If a typical finite element formulation for the
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composite beam is derived based on their assumption, the damping induced on the beam will be
given by the equation

obEmdnG
z22 	 z21

2

� �
fdag

Z L

0

@Na

@x

� �
½Nb�dxfdbg þ fdbg

T

Z L

0

@Nb

@x

� �T @Nb

@x

� �
dxfdbg

( )
: ð23Þ

The first term gives the coupling between axial and bending damping matrices, while the next term
gives the uncoupled bending damping matrix. This formulation is used to check the damping
parameter a; and damped frequency od ; with the results of Reddy and Barbosa [10]. The cross-
sectional and inertial coefficients for different lay-ups and materials are taken from the tables in
Ref. [10]. The results from the finite element procedure are compared with those of Reddy and
Barbosa [10] as shown in Tables 1 and 2.
Table 1 shows the comparison of damping and frequency parameters for the first five modes for

a carbon fiber-reinforced plastics (CFRP) beam with a simply supported boundary condition. The
lay-up sequence of [745/m/0/90] is symmetric about the mid-plane of the laminate. The ‘‘745’’
denotes one layer with a fiber angle of +45� and the next layer with fiber angle of 	45�. The ‘‘/’’
is used to separate the adjacent layer with the different fiber angles. The ‘‘m’’ represents a single
layer of magnetostrictive material. The next number ‘‘0’’ represents the fiber angle of 0� and so on.
The table shows a good comparison between the present formulation and those obtained by

Table 1

Comparison of damping and frequency parameters for the first five modes for a CFRP beam with a simply supported

boundary condition

	a; od (rad/s) Lay up (745/m/0/90) s

Mode Present formulation Krishnamurthy et al. [9] Reddy et al. [10] EBT [10]

1 3.29, 104.85 3.29, 104.88 3.30, 104.82 3.30, 104.85

2 13.19, 419.46 13.19, 419.50 13.16, 418.80 13.20, 419.37

3 29.67, 944.12 29.70, 943.88 29.28, 940.52 29.68, 943.40

4 52.69, 1679.84 52.86, 1678.83 52.10, 1667.68 52.73, 1676.72

5 82.12, 2628.78 82.59, 2621.87 80.80, 2597.09 82.34, 2619.02

Table 2

Comparison of damping and frequency parameters for the first mode for different lay-up sequences of a CFRP beam

with simply supported boundary condition

	a; od (rad/s) Mode 1

Lay up Present formulation Krishnamurty et al. [9] Reddy et al. [10] EBT [10]

(45/m/	45/0/90) s 4.61, 102.14 4.60, 102.17 4.62, 102.11 4.62, 102.15

(m/745/0/90) s 5.92, 98.42 5.90, 98.44 5.93, 98.38 5.94, 98.42

(m/904) s 5.91, 64.65 5.90, 64.65 5.94, 64.64 5.94, 64.65

(m/04) s 5.93, 143.57 5.90, 143.58 5.94, 143.44 5.94, 143.57
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Reddy and Barbosa with higher order shear deformation theory [10], Euler beam theory (EBT)
with first order shear deformation theory [10] and Krishnamurthy et al. [9].
Table 2 shows the influence of the location of the magnetostrictive layer in the z direction and

the influence of lamination scheme on the damping and frequency parameters. Results are
tabulated for simply supported boundary condition, with four different lay-up schemes. The
parameters are compared for the first mode of vibration and it can be seen that the values match
very closely.
From these comparisons it is clear that the finite element formulation and solution procedure

are consistent and valid.

4. Numerical results and discussions

Now a cylindrical titanium shell of dimension 0.292m radius and 3.3528m length with a
thickness of 3mm is considered. On the top of the shell a layer of Terfenol-D material of thickness
1mm is placed. The properties of the magnetostrictive material, are Em ¼26.5GPa, rm ¼9250 kg/
m3 and d ¼1.67
 10	8m/A. The effective radius of the coils, rc; enclosing the plate is taken to be
0.8m, with a coil density, n0 turns/m. The coils are of 38 AWG Copper wires with a density of
8844 kg/m3. The mass of the coil per unit length assuming n0 ¼10

4 is 3.15 kg.
The shell is discretized into an 8
 8 mesh, which is 8 elements in the longitudinal direction and

8 elements in radial direction. The length of the actuating coil is also dictated by the size of the
element due to finite element discretization. It is assumed that the magnetostrictive material is
bonded to the titanium shell on top. The size of the magnetostrictive is equal to one individual
finite element on the plate. A detailed parameter study for clamped–clamped boundary conditions
has been carried out to examine the effect of coil and magnetostrictive material pair location on
damping with a feedback gain of hundred.
The magnetostrictive layer is located at different elements along the radial direction as well as

longitudinal direction. The variation of damping ratio with respect to the location of
magnetostrictive layer in both the circumferential and radial directions is shown in Figs. 3–10.
Fig. 3 shows the variation of damping ratio when the layer position is shifted along the

longitudinal direction. It can be seen from the figure that the pattern is symmetric about the
middle of the shell. Modes 1 and 2 show that the damping ratio increases from a minimum near
the clamped edge and starts increasing, but when the layer is located near the center of the shell it
drops to a minimum value. Mode 3 shows an increase from a lower value as the layer is shifted
from the clamped end to the middle but it falls and again increases to a maximum value near the
middle of the shell. Modes 4 and 5 have a relatively low damping value through out, while mode 6
depicts a pattern shown by mode 3 but of lower damping value.
Figs. 4–6 show the variation damping ratio when the layer is located along the longitudinal

direction but along a different circumferential strip of finite elements. Fig. 4 shows a relatively low
damping ratio for all modes except for the first mode where as the layer position is shifted from
the clamped end towards the middle, it increases to a maximum. All the modes show a low value
of damping ratio when the layer is located at the middle. Modes 5 and 6 show a decreasing trend
when the layer is shifted from the clamped end to the middle. Fig. 5 shows the damping ratio
pattern when the layer is located at the third finite element longitudinal strip. From the figure it is
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seen that for mode 1 the damping ratio increases from a lower value to a maximum and then
drops to a minimum value as the location is shifted from the clamped end to the middle. Modes 3
and 4 show an increasing trend but as the layer is located near the middle, it attains a lower value.
Modes 2 and 5 behave in an entirely opposite way till the layer reaches the middle. Mode 2 drops
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from the initial higher value and then increases and the decreases again near the middle, while
mode 6 shows a decreasing trend from the clamped end to the middle of the shell. From Fig. 6 one
can see that, except for modes 1 and 3 all other modes have a lower damping value as the layer is
positioned along the bottom longitudinal strip of the shell. Mode 1 shows an alternating pattern
in the damping ratio. It decreases from a high value when the layer is shifted from the clamped
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end but increases to the highest value when shifted towards the middle. As the layer is positioned
on either side of the middle, damping ratio attains a lowest value.
Figs. 7–10 show the variation of damping ratio as the magnetostrictive layer is located around

the radial elements and shifted from the radial ring near the clamped end to the middle of the
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shell. Fig. 7 indicates that the damping ratio alternates as the location is shifted along the radial
directional elements for almost all modes. Modes 1 and 3 have a maximum damping value when
the layer is positioned at the bottom of the shell. Fig. 8 also exhibits the same pattern as that of
Fig. 7. As the location of the layer is moved from the clamped end towards the middle of the shell,
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mode 1 alone has a significant damping value. All other modes have a minimum value when the
layer is placed around the radial elements as shown in Fig. 9. Fig. 10 features the variation of
damping ratio when the layer coil pair is located around the radial elements near the middle of the
shell. Mode 1 has a minimum value of damping ratio. Mode 3 alone has a significant variation of
damping ratio as it decreases from a maximum at the first element and alternatively varies as the
position is changed around the radial elements.

5. Conclusions

In the present study, a finite element formulation is derived for shell with a magnetostrictive
layer on top. The mathematical finite element model developed is consistent with the physics of
the problem, unlike earlier formulations reported in the literature. A parametric study has been
carried out for clamped–clamped boundary condition as well as for different location of actuating
coils. This study seems to indicate that the location of the actuating coil to obtain better damping
depends on the circumferential mode shapes. In general the maximum damping is obtained when
the location of magnetostrictive layer is located at a point on the shell where the displacement is
maximum for that mode.
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